Chapter 3 - Structured Program
Development

Outline

3.1 Introduction

3.2 Algorithms

3.3 Pseudocode

3.4 Control Structures

35 The If Selection Statement

3.6 The If...Else Selection Statement

3.7 The While Repetition Statement

3.8 Formulating Algorithms: Case Study 1 (Counter-Co ntrolled
Repetition)

3.9 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled Repet ition)
3.10 Formulating Algorithms with Top-down, Stepwise

Refinement: Case Study 3 (Nested Control Structures)
3.11 Assignment Operators
3.12 Increment and Decrement Operators

© Copyright by Deitel - -

Objectives

* In this chapter, you will learn:
— To understand basic problem solving techniques.

— To be able to develop algorithms through the procketsp-down,
stepwise refinement.

— To be able to use thef selection statement aridff...else
selection statement to select actions.

— To be able to use thvhi1e repetition statement to execute
statements in a program repeatedly.

— To understand counter-controlled repetition andirselrtontrolled
repetition.

— To understand structured programming.

— To be able to use the increment, decrement anchassig
operators.

© Copyright by Deitel - -

3.1 Introduction
» Steps to write a program (Review):
— Define the problem to be solved with the computer

— Design the program’s input/output (what the useutd
give/see)

Break the problem into logical steps to achieve dlitput
Write the program (with an editor)

Compile the program

Test the program to make sure it performs as ypeaed

» Before writing a program:
— Have a thorough understanding of the problem
— Carefully plan an approach for solving it
* While writing a program:
— Know what “building blocks” are available
— Use good programming principles

© Copyright by Deitel - -

3.2 Algorithms (% &%)

» Computing problems
— All can be solved by executing a series of actiares specific
order
» Algorithm: procedure in terms of
— Actions to be executed
— The order in which these actions are to be executed
— Example: "rise-and-shine algorithm" But if
» Get out of bed
» Take off pajamas
» Take a shower
» Get dressed
» Eat breakfast
» Carpool to work
» Program control
— Specify order in which statements are to be execut

© Copyright by Deitel - -

3.3 Pseudocode

* Pseudocode (k& 845)

Artificial, informal language that helps us develop
algorithms

Similar to everyday English

Not actually executed on computers

Helps us “think out” a program before writing it
* Easy to convert into a corresponding C++ program
* Consists only of executable statements

© Copyright by Deitel - -

3.4 Control Structures

« Sequential executiofiiz 5 34 i7)
— Statements executed one after the other in ther endtten
» Transfer of control

— When the next statement executed is not the mextro
sequence

— Overuse ofoto statements led to many problems

* Bohm and Jacopini showed that

— All programs can be written in terms of 3 conswolctures

» Sequence structureBuilt into C. Programs executed
sequentially by default

 Selection structuresf #): C has three typesf, if..else,
andswitch

* Repetition structuresy #]): C has three typewhie,
do..while andfor

© Copyright by Deitel - -

3.4 Control Structures

Figure 3.1 Flowcharting (/= #2 B) C’s sequence structure.

J

add grade to total total = total + grade;
add | to counter counter = counter + 1;

:

© Copyright by Deitel - -

3.4 Control Structures

e Flowchart (iR #2.8])
— Graphical representation of an algorithm

— Drawn using certain special-purpose symbols connegtadrows
called flowlines

— Rectangle symbol (action symbol):
« Indicates any type of action
— Oval symbol:
« Indicates the beginning or end of a program aatien of code
— Small circle symbol (connector symbol):
« Beginning or end of a small portion of an algarith
— Diamond symbol (decision symbol)
¢ Indicates a decision is to be made (will be disedsnext section)
* Single-entry/single-exit control structures

— Connect exit point of one control structure to epwint of the next
(control-structure stacking)

— Makes programs easy to build

© Copyright by Deitel - -

Flowchart Symbols and Examples

— B2RWTNAEE D W/ BN
wElBF O —

FromM#tZERGE “CRE F

© Copyright by Deitel [«]

10

3.5 The if Selection Statement

e Selection structure:
— Used to choose among alternative courses of action
— Pseudocode:
If student’s grade is greater than or equal to 60
Print “Passed”
 If conditiontrue

— Print statement executed and program goes orxto ne
statement

— If false, print statement is ignored and the program goes
onto the next statement

— Indenting makes programs easier to read
» Cignores whitespace characters

© Copyright by Deitel - -

11

3.5 The if Selection Statement

 C Code:

if (grade >= 60)
printf("Passed\n");
or
if (grade >= 60)
{ printf("Passed\n"); }
* Psuedocode:

If student’s grade is greater than or equal to 60
Print “Passed”

— C code corresponds closely to the pseudocode

» Diamond symbol (decision symbol)
— Indicates decision is to be made
— Contains an expression that cantlbae or false
— Test the condition, follow appropriate path
© Copyright by Deitel [« >

12

3.5 The if Selection Statement

« 1if statement is a single-entry/single-exit structure

? A decision can be made on
any expression.
true . . zero -false
grade >= 60 —> print “Passed

nonzero -true

Example:

fa\seé

3 - 4istrue

© Copyright by Deitel - -

14

13
3.6 The if...else Selection Statement 3.6 The if...else Selection Statement
s f . CCQSE(:: de >= 60)
L e i grade >=
— Only performs an action if the conditiontisue printf("Passed\n");
e if...else else
— Specifies an action to be performed both wherctmalition printf("Failed\n™);
is true and when it isfalse e Ternary conditional operator ¢ :)
e Psuedocode: — Takes three arguments
If student’s grade is greater than or equal to 60 condition ? value itrue : value iffalse
Print “Passed” .
olse — Our pseudocode could be written:
Print “Failed” printf("%s\n", grade >= 60 ? "Passed" : "Failed");
— Note spacing/indentation conventions — Orit could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);
© Copyright by Deitel - - © Copyright by Deitel - -
15 16

3.6 The if...else Selection Statement

* Flow chart of thei f...e1se selection statement

{

o false true e .
print “Failed” -— grade >= 60 —> print “Passed”

0.

!

* Nestedif...else statements

— Test for multiple cases by placirigi...e1se selection
statements insidef...else selection statement

— Once condition is met, rest of statements skipped
— Deep indentation usually not used in practice

© Copyright by Deitel - -

3.6 The if...else Selection Statement

e Compound statement:
— Set of statements within a pair of braces

— Example:
if (grade >= 60)
printf("Passed.\n");
else {
printf("Failed.\n");
printf("You must take this course again.\n");

— What is the difference between the above stateareht
if (grade >= 60)
printf("Passed.\n");
else
printf("Failed.\n");
printf("You must take this course again.\n");
— Answer: Same as
if (grade >= 60)
printf("Passed.\n");
else
printf("Failed.\n");
printf("You must take this course again.\n");
That is,
printf("You must take this course again.\n");
would be executed automatically for the second case.

© Copyright by Deitel - -

17 18
3.6 The if...else Selection Statement 3.6 if..else [id %t F}FJ R
. .
Block:]] 3.31 Determine the outputwhenx =9 andy =ldwhenx=11andy =9
— Compound statements with declarations
e Syntax errors if(x<10) if (x<10)
— Caught by compiler if(y>10) if(y>10)
. printf("0); printf("****\n")
* Logic errors: else else
— Have their effect at execution time printi(“#####AN”), | print("###HAAN"),
— Non-fatal: program runs, but has incorrect output printf(“$$$$$n”) printi("$$$$$\n”)
— Fatal: program exits prematurely
Ans: x=9,y=11 Ans: x=11,y=9
*kkkk $$$$$
$$$5$
© Copyright by Deitel - - © Copyright by Deitel - -
19 20

3.6 if..else [id %f Fﬁj &

3.31 Determine the outputwhenx=9andy =Idwhenx=11andy =9

if (x<10){ if (x<10){
if (y>10) if (y>10)
printf("****\n"); printf("****\n");
} }
else { else {
printf("#HH#AN"); printf("#H#AN");
printf("$$$$H\n"); printf("$$$$$\n");
} }
Ans forx=9,y=11 Ans forx=11,y=9
*kkkk #####
$$$5$

© Copyright by Deitel - -

3.6 if..else [id %t F}FJ &

3.31 Determine the outputwhenx=9andy =Idwhenx=11landy=9

if (x<10) if (x<10)

if(y>10){ if (y>10){

printf("*****¥\n"); printf("***\n");

} }

else { else {

printf("#H#AN"); printf("N);
printf("$$$$$\n"); printf("$$$$$\n");
} }

Answers?

© Copyright by Deitel - -

36 if..else i % Ml &

3.32 Modify the following code to produce the auttghown.

if(y==8)
f(y==8) if (x==5)
if (x==5) printf(*@@@@@\n");
printfi("@@@@@\n"); else {
else printf(“###HHAN");
printf("#HHHAN"); printf(“$$$$H\n”);

printf("$$$$$\n"); }
printf("&&&&&\n");
printf(“&&&&&\n”);

Assuming x =5 and y = 8, the following output isguced.
@E@@@@
&&&&&

© Copyright by Deitel - -

3.6 if..else [id %t F}FJ R
What is the output for the following code?
int course, code;

course = 1,

code = 2;

if (course==1)
if (code<2)

printf("Chemical Engineering\n");
else

printf("No course listed\n");
printf("*** End of course listings ***\n");

Which one is the correct output?
No course listed
*** End of course listings ***
or
*** End of course listings ***

© Copyright by Deitel - -

22

23
3.6 The if...else Selection Statement

e C code:
if (grade >= 60)
printf("Passed\n");
else

printf("Failed\n");
» Ternary conditional operato? ()
— Takes three arguments
condition ? value itrue : value iffalse

— Our pseudocode could be written:
printf("%s\n", grade >= 60 ? "Passed" : "Failed");

— Or it could have been written:
grade >= 60 ? printf(“Passed\n”) : printf(“Failed\n”);

© Copyright by Deitel - -

3.6 The if...else Selection Statement

— Pseudocode for a nestéfl...eTse statement
If student’s grade is greater than or equal to 90
Print “A”
else
If student’s grade is greater than or equal to 80
Print “B”
else
If student’s grade is greater than or equal to 70
Print “C”
else
If student’s grade is greater than or equal to 60
Print “D”
else
Print “F”

© Copyright by Deitel - -

24

3.6 The if...else Selection Statement

if (grad >=90) if (grad >= 90)
printf(“A\n”); printf(“A\n”);

else else if (grade >= 80)

if (grade >= 80) printf(“B\n”);
printf(“B\n”); else if (grade >=70)

else printf(“C\n”);

if (grade >=70) else if (grade >= 60)
printf(“C\n”); printf(“D\n”);

else else

if (grade >=60)
printf(“D\n”);

printf(“F\n”);

else
printf(“F\n”);

© Copyright by Deitel - -

25

3.7 The while Repetition Statement

* Repetition structure

— Repetition structuresy]): C has three typewhile,
do..while andfor

— Programmer specifies an action to be repeatecsbihne
condition remaingrue

-t R 4 2 while i E)
— Psuedocode

26

Condition
Whilé there are more items on my shopping li

Purchase next item and cross it off my list A
- while loop repeated until condition becomfésl se Qphs

© Copyright by Deitel - -

3.7 The while Repetition Statement

« Example:
int product = 2;

while (product <= 1000)
product = 2 * product;

T
v

true
product <= 1000 ~— product = 2 * product

falseé

The final value of product will be 1024.

© Copyright by Deitel - -

27

3.8 Formulating Algorithms

(Counter-Controlled Repetition)

e Counter 3+ # %)-controlled repetition
— Loop repeated until counter reaches a certairevalu
— Definite repetitionnumber of repetitions is known

— Example: A class of ten students took a quiz. Thdeg (integers
in the range 0 to 100) for this quiz are availablgdu. Determine
the class average on the quiz

— Pseudocode:

Set total to zero

Set grade counter to one|

While grade counter is less than or equal to te
Input the next grade
Add the grade into the total
Add one to the grade counter

=]

Set the class average to the total divided by ten
Print the class average

© Copyright by Deitel - -

28

int counter; /* number of grade to be entered next */
int grade; /* grade value */

int total; /* sum of grades input by user */

int average; /* average of grades */

1 /* Fig. 3.6: fig03_06.c E’ 29
2 Class average program with counter-controlled repetition */ OUtline

3 #include <stdio.h>

4

5 /* function main begins program execution */ f|gO3_06.c (Part 1of 2)
6 int mainQ)

71

8

9

PR R
w N P O

/* initialization phase */
total = 0; /* initialize total */
counter = 1; /* initialize loop counter */

N
~N o o b

/* processing phase */

18 while (counter <= 10) { /* loop 10 times */

19 printf("Enter grade: "); /* prompt for input */

20 scanf("%d", &grade); /* read grade from user */
21 total = total + grade; /* add grade to total */
22 counter = counter + 1; /* increment counter */

23 } /* end while */

N
i

© Copyright by Deitel

25 /* termination phase */

26 average = total / 10; /* dinteger division */ m Out"ne
27

28 /* display result */

29 printf("Class average is %d\n", average);

30

31 return 0; /* indicate program ended successfully */
32

33 } /* end function main */

Enter grade: 98
Enter grade: 76 Program Output
Enter grade: 71
Enter grade: 87
Enter grade: 83
Enter grade: 90
Enter grade: 57
Enter grade: 79
Enter grade: 82
Enter grade: 94
Class average is 81

30

fig03_06.c (Part 2 of
2)

© Copyright by Deitel

31

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement

e Problem becomes:

Develop a class-averaging program that will procass
arbitrary number of grades each time the programuis.

— Unknown number of students
— How will the program know to end?
» Use sentinel valug# =" & ~ 2 5)
— Also called signal value, dummy value, or flagnea(7# &
=R
— Indicates “end of data entry.”
— Loop ends when user inputs the sentinel value

— Sentinel value chosen so it cannot be confusddaviegular
input (such as1 in this case)

© Copyright by Deitel - -

32

3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement
» Top-down, stepwise refinement

— Begin with a pseudocode representation otdpda single
statement that conveys the program's overall fangti
Determine the class average for the quiz

— Dividetopinto smaller tasks (refinement) and list them in
order:

Initialize variables
Input, sum and count the quiz grades
Calculate and print the class average
* Many programs have three phases:
— Initializatior: initializes the program variables

— Processinginputs data values and adjusts program variables
accordingly

— Termination calculates and prints the final results
© Copyright by Deitel - -

33 34
3.9 Formulating Algorithms with Top- 3.9 Formulating Algorithms with Top-
Down, Stepwise Refinement Down, Stepwise Refinement
» Refine the initialization phase fromitialize Initialize total to zero
variablesto: Initialize counter to zero
Initialize total to zero
Initialize counter to zero Input the first grade
° ReﬁnempuL sum and count the quiz grades While the user has not as yet entered the sentipel
Input the first grade (possibly the sentinel) Add this grade into the running total
While the user has not as yet entered the sentinel Add one to the grade counter
Add this grade into the running total Input the next grade (possibly the sentinel)
Add one to the grade counter P 9 P y
Input the next grade (possibly the sentinel)
« RefineCalculate and print the class averaige If the counter is not equal to zero
If the counter is not equal to zero Se_t the average to the total divided by the counter
Set the average to the total divided by the counter Print the average
Print the average else
else Print “No grades were entered”
Print “No grades were entered” 9
© Copyright by Deitel - - © Copyright by Deitel - -
1 /* Fig. 3.8: fig03_08.c m 35 m 36
2 Class average program with sentinel-controlled repetition */ Out"ne 23 /* loop while sentinel value not yet read from user */ Outline
3 #include <stdio.h> 24 while (grade != -1) {
4) 25 total = total + grax /* add grade to total */ .
5 /* function main begins program execution */ 2?2)3—08'(: (Part1 26 counter = counter + 1; /* increment counter */ 2303_08'(: (Part 2 of
6 int mainQ) 27 /* Get the next grade from user
7 q 28 printf("Enter grade, -1 to end: "); for input */
8 int counter; /* number of grades entered */ 29 scanf("%d", &grade); /* rea
9 int grade; /* grade value */ 30 } /* end while */
10 int total; /* sum of grades */ 31
1 32 /* termination phase */
12 float average; /* number with decimal point for average */ 33 /% if user entered at least one grade */
13 e 34 | if C counter 1=0) { PS5 AL B
14 /* initialization phase */ 35 1 I,' IAI»I‘W?_(?FE, ”Jﬂifii:.'}’ﬁg'(
12 EZE:le: 2;0_ j: ::::::::i: ::::1c:£nter %/ 36 /* calculate average of all grades entered */ tr'fl -1 Eﬁ ’ﬁl 7'}5‘@33\@_[%{@‘@‘
17 ’ 37 average = (float) total / counter; J_'“ 2 %@?Liﬁéj hiis [[E{F’Ew it
18 /* processing phase */ 38 /
19 /* get first grade from user */ 39 /*.d1sp'lay average w1th'two digits of precision */
20 printf("Enter grade, -1 to end: "); /* prompt for input */ 40 printf("Class average is %.2f\n", average);
21 scanf("%d", &grade); /* read grade from user */ 41 } /* end if */
22 42 else { /* if no grades were entered, output message */
43 printf("No grades were entered\n");
44 } /* end else */
45
46 return 0; /* indicate program ended successfully */
47

© Copyright by Deitel

48 } /* end function main */
© Copyright by Deitel

il = won A outine ®
Erier §£§§Z i @ ::§ % o 3.10 Nested Control Structures
Enter grade, -1 to end: 64
Enter orade, -1 to end: 89 « Problem
Clase Sversge 1s 82050 — A college has a list of test results< pass = fail) for 10
Enter grade, -1 to end: -1 students
No grades were entered — Write a program that analyzes the results
* If more than 8 students pass, print "Raise Tuition"
* Notice that
— The program must process Eokfown valuptest results
» Counter-controlled loop will be used
— Two additional counters can be used
* One for number of passes, one for number of fails
— Each test result is a number—eithdrar a2
« If the number is not &, we assume that it is2a
© Copyright by Deitel © Copyright by Deitel - -
39 40

3.10 Nested Control Structures

» Top level outline
Analyze exam results and decide if tuition shouldaized

» First Refinement
Initialize variables
Input the ten quiz grades and count passes and failure

Print a summary of the exam results and decide ibtughould
be raised

» Refinelnitialize variablesto
Initialize passes to zero
Initialize failures to zero
Initialize student counter to one

© Copyright by Deitel - -

3.10 Nested Control Structures

» Refinelnput the ten quiz grades and count passes
and failuresto

While student counter is less than or equal to ten
Input the next exam result

If the student passed

Add one to passes
else
Add one to failures

Add one to student counter
* RefinePrint a summary of the exam results and
decide if tuition should be raisad
Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

© Copyright by Deitel - -

41
3.10 Nested Control Structures

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes

else

Add one to failures

Add one to student counter

Print the number of passes

Print the number of failures

If more than eight students passed
Print “Raise tuition”

© Copyright by Deitel - -

/* Fig. 3.

10: fig03_10.c

#include <stdio.h>

int mainQ

{

© O NV A WN R

R R R R
w N = O

Analysis of examination results */

/* function main begins program execution */

/* initialize variables in definitions */
int passes = 0; /* number of passes */
int failures = 0; /* number of failures */
int student = 1; /* student counter */
int result; /* one exam result */

m Outline

B
[PEN

while (student <= 10) {

B e R R
0 0 N O

scanf("%d", &result);

~N
=]

7* process 10 students using counter-controtiedToop

/* prompt user for input and obtain value from user */
printf("Enter result (l=pass,2=fail): ");

NN
[N

if (result == 1) {
passes = passes + 1;
} /* end if */

NN
(e NI

N
o

/* if result 1, increment passes */

else { /* otherwise, increment failures */
failures = failures + 1;

N
~N

} /* end else */

N
oo

©C pyrlghsttbb}aDenel

N
©

ent = student + 1; /* increment student counter */

42

fig03_10.c (Part 1 of

2)

31
32
33
34
35
36
37
38
39
40
a1
42
43

E . 43
Outline

/* termination phase; display number of passes and failures */
printf("pPassed %d\n", passes);

printf("Failed %d\n", failures); figO3 10.c (Part 2

of 2)

/* if more than eight students passed, print "raise tuition" */
if (passes > 8) {

printf("Raise tuition\n");
} /* end if */

return 0; /* indicate program ended successfully */

} /* end function main */

© Copyright by Deitel

Enter Result (l=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (l=pass,2=fail):
Enter Result (l=pass,2=fail):
Enter Result (1l=pass,2=fail):
Passed 6

Failed 4

Enter Result (1l=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (l=pass,2=fail):
Enter Result (l=pass,2=fail):
Enter Result (1l=pass,2=fail):
Enter Result (1l=pass,2=fail):
Passed 9

Failed 1

Raise tuition

© Copyright by Deitel

NRRNRERRBNNRE

RPRRERRERERNRRR

%%ine

Program Output

44

45

3.11 Assignment Operators

« Assignment operators abbreviate assignment
expressions
c=cC+ 3;
can be abbreviated as+= 3; using the addition assignment
operator
« Statements of the form
variable= variable operatorexpression
can be rewritten as
variable operator = expression

» Examples of other assignment operators:

d =4 (d=d - 4)

e *=5 (e =e *5)

f /=3 (f=~Ff/3)

g %=9 (g=9%9
© Copyright by Deitel - -

3.11 Assignment Operators

Assume:int ¢ =3, d=5, e=4, f=6, g=12;

+= C +=7 c=C+7 10toc

-= d -=4 d=d - 4 ltod

*= e *=§ e=e*5 20to e

/= f /=3 f=f/3 2tof

%= g %= 9 g=9%9 3tog
© Copyright by Deitel --

46

a7

3.12 Increment and Decrement Operators

Increment operator)

— Canbeusedinsteadof= ¢ + 1 or c += 1
Decrement operator ¢)

— Can be used insteadof= c - 1 or ¢ -= 1
Preincrement

— Operator is used before the variable-¢€ or —-c)

— Variable is changed, then the expression it is @valuated
Postincrement

— Operator is used after the variable+¢ or c--)
— Expression executes, then the variable is changed

© Copyright by Deitel - -

3.12 Increment and Decrement Operators

e If c=5,then
printf("%d", ++c);
— Prints6
printf("%d", c++);
— Prints5

— In either case; now has the value &

» When variable not in an expression

— Preincrementing and postincrementing have the sffeet
++C;
printf(“%d”, c);

— Has the same effect as

C++;
printf(“%d”, c);

© Copyright by Deitel - -

48

49 1 /* Fig. 3.13: fig03_13.c 50
2 Preincrementing and postincrementing */ m Out"ne
3 #include <stdio.h>
3.12 Increment and Decrement Operators ’ ¥
5 /* function main begins program execution */ f|gO3_13.c
6 int mainQ)
7 q
8 int c¢; /* define variable */
++ ++a Increment a by 1, then use the new value of a in ° .
: 5 5 . 10 /* demonstrate postincrement */
the expression in which a resides. . .
11 c=5; /* assign 5 to ¢ */
++ a++ Use the current value of a in the expression in 12 printf("%d\n", ¢); /* print 5 */
which a resides, then increment a by 1. 13 printf("%d\n", c++); /* print 5 then postincrement */
-- --b Decrement b by 1, then use the new value of b S S C 8 e TR G
in the expression in which b resides. 1
. L 16 /* demonstrate preincrement */
= b-- Use the current value of b in the expression in 17 c=s; /% assign 5 to c */
which b resides, then decrement b by 1. 18 printf("%d\n", €); /* print 5 */
19 printf("%d\n", ++c); /* preincrement then print 6 */
20 printf("%d\n", c); /* print 6 */
21
22 return 0; /* indicate program ended successfully */
23
24 } /* end function main */
© Copyright by Deitel [< »| © Copyright by Deitel
5 51 52
6 [4] Outline
¥ Exercise
z Program Output
; [t f T R o
include <stdio.
int main()
passes = passes + 1; . { .
fail fail 1 "passes intc=5;
ailures = failures +1; i . . " "
. ’) +Hailures; printf("c = %d\n", c); c =5
student = student + 1; . . " " .
++student; printf("c++ = %d\n", c++); c++=5
printf("--c = %d\n", --c); -—C=
printf("--c = %d\n", --c); -c= 4
printf("c++ = %d\n", c++); ct+= 4
passes += 1 passest; printf(" ¢ = %d\n", c); c=5
failures += 1, failures++; printf("o = %d\n", +4C); ++C= 6
student += 1; student++; printf("--c = %d\n", --Cc); -c= 5
printf("c-- = %d\n", c--); c- =25
printf(" ¢ = %d\n", c); c=4

© Copyright by Deitel

return O;

© Copyright by Deitel

53 54
3.12 Increment and Decrement Operators Exercise

#include <stdio.h>

int main()

{

int a, c, d;
++ (postfix) -~ (postfix) right to left postfix
+ - (gpe) ++ (prefix) -- (prefix) right to left unary a=9;c=5;
/% left to right multiplicative d=a-c
L left to right additive printf("a = %2d, ¢ = %2d, d = %2d\n", a,c,d);
< <= > o= left to right relational
= s left to right equality Z - 9:c=5
[right to left conditional cem e
= 4= -= F= [= %= right to left assignment printf("a = %2d, ¢ = %2d, d = %2d\n", a,c,d);
return 0;
}
a=8,c= =4
a=8,c= =
© Copyright by Deitel - - © Copyright by Deitel - -
55 56
Review Exercise 3.11

* In this chapter, we have learned:

To understand basic problem solving techniques.
To be able to develop algorithms through the proogégsp-down,
stepwise refinement.

To be able to use thef selection statement ariff...el1se
selection statement to select actions.

To be able touse: ,i.e.,condition ? value itrue : value if
false

To be able to use theéhiTe repetition statement to execute
statements in a program repeatedly.

To understandounter-controlled repetiticandsentinel-controlled
repetition

To understand structured programming.

To be able to use the increment, decrement anchassig
operators.

© Copyright by Deitel - -

Identify and correct the errors in each of thedwihg [Note
There may be more than one error in each pieceds]|c

if (age >=65);

printf("Age is greater than or equal to 65\n");
else
printf("Age is less than 65\n");
ANS:
if (age >=65) I*; removed */

printf("Age is greater than or equal to 65\n");
else

printf("Age is less than 65\n");

© Copyright by Deitel - -

Exercise 3.11

57

Identify and correct the errors in each of thedeihg

[Note There may be more than one error in each pieceds]:

int x =1, total; While (x <=100)
while (x<=10) { total += x;
total += x; ++X;
++X;
} ANS:
ANS: while (x <=100) {
int x=1, total=0 ; total += x;
while (x <=10) { ++X;
total += x; }
++X;
}
© Copyright by Deitel [< »|

y=5;
while (y>0){
printf("%d\n", y);

++y;

ANS:

y=5;

while (y>0){
printf("%d\n", y);
=y

